Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Cellular and Molecular Immunology ; (12): 410-415, 2023.
Article in Chinese | WPRIM | ID: wpr-981881

ABSTRACT

Objective To investigate the protective effect of artesunate on hypoxic-ischemic brain damage (HIBD) and its mechanism in neonatal rats. Methods 7-day-old neonatal SD rats were randomly divided into sham operation group, model group, artesunate 5 mg/kg group, artesunate 10 mg/kg group, artesunate 20 mg/kg group and dexamethasone 6 mg/kg group, with 18 rats in each group. HIBD models were established in groups except for the sham operation group. The sham operation group only needed to separate the left common carotid artery without ligation and nitrogen-oxygen mixed gas ventilation. Each group was injected with drug intraperitoneally right after surgery and the rats in the sham operation group and the model group were injected with an equal volume of normal saline (once a day for a total of 5 times). One hour after the last injection, the rats in each group were scored for neurological defects. After the rats were sacrificed, the brain water content was measured and the pathological changes of the brain tissues of rats were observed. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was used to detect the neuronal cell apoptosis, and ELISA was applied to detect the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood of each group of rats. Western blot analysis was adopted to detect the protein expression levels of NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1 in the rats brain tissues of each group. Results Compared with the model group, the neurological deficit score was decreased; the pathological damage of brain tissues was relieved; the brain water content was significantly reduced; the apoptosis number of hippocampal neurons was decreased significantly; the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood were significantly reduced; the protein expression levels of NLRP3, ASC and caspase-1 were significantly lowered in the middle-dose and high-dose artesunate groups and the dexamethasone group. Conclusion Artesunate can improve the neurological function, relieve the brain damage, and alleviate the brain edema in neonatal rats with HIBD. It can protect the HIBD, which may be related to the inhibition of NLRP3 inflammasome activation and reduction of inflammatory cytokine secretion.


Subject(s)
Animals , Rats , Animals, Newborn , Artesunate/pharmacology , Brain/metabolism , Caspases/metabolism , Dexamethasone , Hypoxia-Ischemia, Brain/pathology , Inflammasomes , Interleukin-6/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Water/metabolism
2.
Braz. j. med. biol. res ; 52(5): e7992, 2019. graf
Article in English | LILACS | ID: biblio-1001527

ABSTRACT

The aim of this study was to evaluate the influence of artesunate on Th1 differentiation and its anti-tumor effect on ovarian cancer. A Murine ovarian cancer model was established by ID8 cells transplantation. The expression of miR-142 and Sirt1 proteins in peripheral CD4+ T cells were quantified with qRT-PCR and western blot, respectively. Peripheral CD4+ T cells were induced for Th1 differentiation. The percentages of apoptosis of Th1/CD4+ T cells and ovarian cancer cells were analyzed by flow cytometry. The IFN-γ level was examined through enzyme-linked immunosorbent assay. Artesunate promoted miR-142 expression in peripheral CD4+ T cells and Th1 differentiation from CD4+ T cells. Artesunate promoted cell apoptosis of ovarian cancer cells by inducing Th1 differentiation. By up-regulating miR-142, artesunate suppressed Sirt1 level and promoted Th1 differentiation. Artesunate enhanced the pro-apoptotic effects of Th1 cells on ovarian cancer via the miR-142/Sirt1 pathway. Artesunate promoted Th1 differentiation from CD4+ T cells by down-regulating Sirt1 through miR-142, thereby enhancing cell apoptosis in ovarian cancer.


Subject(s)
Animals , Female , Rabbits , Ovarian Neoplasms/drug therapy , CD4-Positive T-Lymphocytes/drug effects , Apoptosis , Th1 Cells/drug effects , MicroRNAs/metabolism , Artesunate/pharmacology , Ovarian Neoplasms/immunology , CD4-Positive T-Lymphocytes/cytology , Down-Regulation , Cell Differentiation , Th1 Cells/cytology , Flow Cytometry , Artesunate/therapeutic use , Mice, Inbred C57BL , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL